Overview of Module 4

- 1. What is one application of cell culture?
 - Research (to study cell behavior), Therapeutics (to produce drugs, tissue grafts, cell-based therapies), Diagnostics (culturing patient cells to make a diagnosis/ prescribe treatment)
- 2. What is the difference between a Biological Safety Cabinet (BSC) and an Incubator?
 The BSC is where you WORK with cells (ex: change media, passage cells) and the Incubator is where you store cells so that they can grow
- 3. List three things that you should NOT do while working in a BSC.
 - Move quickly, not spray your hands with ethanol then end the BSC, pour reagents directly from their container into the culture flask, work with the shield up
- 4. Which solvent do we use to sterilize everything entering the BSC or incubator?
 Ethanol
- 5. Why do we passage cells?
 - To prevent cultured cells from overcrowding and maintain the ideal confluency for our cells
- 6. Why do you need to keep track of the passage number?
 - Cells can only be passaged a certain number of times, as over time they change in morphology and thus experience behavioral changes
- 7. Why is our cell culture media red?
 - Phenol red is added to DMEM, allowing us to visually determine the pH of the cell culture media
- 8. What does it mean if the cell culture media is yellow?
 - Too acidic, cells are too confluent and need to be passaged
- 9. What does it mean if the cell culture media is purple?
 - Too basic, incubator CO2 is not at 5% and the incubator tubing must be examined
- 10. Why is it important to not leave active trypsin in the cell culture flask for too long?
 - Overexposure to trypsin can damage surface proteins and lyse our cultured cells
- 11. What deactivates trypsin?
 - Calcium and magnesium ions provided by Fetal Bovine Serum in DMEM

Practice with Cell Culture Techniques

1. Match the key term to its role in cell passaging:

A. Ethanol	<u>E</u>	Separates cells from liquid and debris
B. CO2	<u>_</u> F	Its calcium and magnesium ions deactivate trypsin
C. Phenol red	<u></u> <u>G</u>	Added to prevent to help prevent contamination
D. PBS	<u>H</u>	Breaks down proteins involved in cell adhesion
E. Centrifuge	_1	Removes excess liquid from flasks and conical tubes
F. FBS	<u>B</u>	5% inside incubator to simulate biological conditions
G. Antibiotics	<u>J</u>	Our cell culture media
H. Trypsin	<u>C</u>	Visualizes pH changes
I. Aspirator	_ <u>A</u>	Sterilization solvent
J. DMEM	<u>D</u>	Rinses excess media and cell waste from flask

- 2. If I do a 1:9 Split on one T-25 flask, the cells will be reseeded in 9 T-25 flasks or 3 T-75 flasks.
- 3. Practice properly labeling your T-25 flask!

4. Identify the contamination present in the cultures below as bacterial, fungal, yeast, or mycoplasma:

- (a) Picture A contains bacterial contamination.
- (b) Picture B contains <u>mycoplasma</u> contamination..
- (c) Picture C contains **yeast** contamination.
- (d) Picture D contains **fungal** contamination.